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Abstract
Exploiting the results of the exact solution for the ground state of the one-
dimensional spinless quantum gas of fermions and impenetrable bosons with
the µ/x2

ij particle–particle interaction, the Hellmann–Feynman theorem yields
mutually compensating divergences of both the kinetic and the interaction
energy in the limiting case µ → − 1

4 . These divergences result from the
peculiar behaviour of both the momentum distribution (for large momenta) and
the pair density (for small inter-particle separation). The available analytical
pair densities for µ = − 1

4 , 0 and 2 allow one to analyse particle-number
fluctuations. They are suppressed by repulsive interaction (µ > 0), enhanced
by attraction (µ < 0), and may therefore measure the kind and strength of
correlation. Other recently proposed purely quantum-kinematical measures
of the correlation strength arise from the small-separation behaviour of the
pair density or—for fermions—from the non-idempotency of the momentum
distribution and its large-momenta behaviour. They are compared with each
other and with reference-free, short-range correlation-measuring ratios of the
kinetic and potential energies.

PACS numbers: 7110, 7110P, 0540, 7145

1. Introduction

In the ground state of electron systems, it has been shown that exchange (X) due to the
Pauli ‘repulsion’ and correlation (C) due to the Coulomb repulsion suppress particle-number
fluctuations and consequently reduce the energy [1–3]. This energy reduction provides most
of the ‘glue’ that binds atoms together to form molecules and solids [4]. Particle-number
fluctuations mean that the particle number in a domain (which may be a muffin-tin sphere,
a Wigner–Seitz cell, a Bader basin [5], a Daudel loge [6], a bond region between atoms in a
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molecule, etc) fluctuates due to zero-temperature quantum motion with a certain probability.
Fulde [1] takes C2H2 as an example for such fluctuations. The number of valence electrons
in a sphere containing a C atom fluctuates around its average value ≈ 3.9. Comparison of
Hartree–Fock (HF) calculations for C2H2 with calculations which include correlation shows
that configurations with large deviations from the average valence electron number (e.g. with
zero and one or seven and eight electrons) are strongly suppressed due to correlation. A
similar fluctuation–correlation analysis is performed in [2] for several dimers and in [3]3 for
the uniform electron gas in one, two and three dimensions (1D, 2D, 3D). These calculations for
the above-mentioned narrowing of the particle-number distribution need the pair density (PD)
n(�r1, �r2) and this narrowing is used to derive from the PD a quantum-kinematical measure
of the correlation strength [1]. Correlation and its strength is furthermore characterized
by the small-separation (or on-top) behaviour of the PD. The spherically averaged on-top
curvature of the spin-parallel PD may serve as a local correlation measure [7] and from
the topological analysis of the intracule PD a short-range correlation strength is defined
[8]. In addition to these PD-based quantities the concept of a correlation ‘entropy’ has
been developed for Fermi systems [9–12]4 (in [11] the term Jaynes entropy is used). It
is based on the correlation induced non-idempotency of the correlated one-particle density
matrix (1PDM) γ (�r; �r ′). All these correlation measures intend to make the qualitative terms
‘weak and strong correlation’ quantitatively precise [13]. Note that strong correlation means
extreme narrowing of the particle-number distribution, which is usually described as electron
localization.

In the present paper, we apply the above-mentioned fluctuation–correlation analysis to
the exactly solvable Calogero–Sutherland (CS) model [14]. The CS model is a model of
long-range-interacting spinless particles in 1D and has been solved exactly by means of
the (asymptotic) Bethe-ansatz technique [14, 15]. The solution is valid for both fermionic
and bosonic particle symmetry. Here we will mostly concentrate on the Fermi systems.
Furthermore, the model can be shown to be the universal quantum model underlying the
dynamical interpretation of random matrix theory [16, 17]. This latter connection has been used
to also compute several correlation functions exactly at three special values of the interaction
strength, among which are the 1PDM and the PD [14]. Thus although the information is
restricted to the 1D case, the model nevertheless is ideally suited for testing the fluctuation–
correlation measures discussed above.

Correlated 1PDM and correlated PD need correlated many-body wavefunctions (beyond
the HF caricature), which in quantum chemistry [18, 19] are traditionally obtained from
configuration-interaction, coupled-cluster, Møller–Plesset, quantum Monte Carlo calculations
or recently from the contracted-Schrödinger-equation method [20] or the incremental method
[21]. All of these procedures involve certain approximations or have restricted applicability.
So the existence of non-trivial exactly solvable models which can provide 1PDM and PD is of
much interest for the mentioned fluctuation and correlation analysis.

We shall only consider the ground state properties of the CS model [14]. The interaction
is pairwise inversely proportional to the square of the distance xij = |xi − xj | of two particles
with interaction strength µ, i.e. µ/x2

ij . The interaction strength µ � − 1
4 is occasionally

parametrized as µ = λ(λ − 1) with a parameter λ = 1
2 +

√
1
4 + µ � 1

2 . We shall

mostly use the parametrization ν =
√

1
4 + µ, such that µ = ν2 − 1

4 and λ = 1
2 + ν.

3 Here it is shown how particle fluctuation is reduced by exchange in the ideal Fermi gas and further reduced by
Coulomb correlation in the interacting electron gas of one, two or three dimensions.
4 In [9] the meaning of Tr(γ − γ 2) is sought, which is in our notation Nc(2).
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In the thermodynamic limit we assume constant density ρ(x) = n, so the CS ground
state has only two parameters, ν and n. The 1/x2

ij interaction has the peculiarity of not
possessing a natural length. Therefore, it is a model showing critical behaviour, which
can be discussed in terms of universality classes and their conformal anomalies [22–25].
This beauty of the 1/x2

ij interaction also shows up in the analytical Bethe ansatz solutions
[14, 26–30] and the explicit knowledge of the correlated many-body wavefunctions [14, 31].
From the Bethe ansatz technique the complete energy spectrum and in particular the ground
state energy per particle as a function of the interaction strength parameter ν is available
[14]. We show that its kinetic and interaction ‘components’ can be deduced with the
help of the Hellmann–Feynman theorem [32]5. Surprisingly, when the interaction strength
parameter ν approaches its limiting value 0, both the kinetic and the interaction energy
diverge in such a way that they compensate each other, leaving the total energy finite. As
we outline in the following, these divergences result from the peculiar behaviour of the 1PDM
and the PD for ν → 0 and are related to the ‘fall-into-the-origin’ already mentioned in
[33].

For ν = 0, 1
2 , and 3

2 —corresponding to µ = − 1
4 , 0 and 2 or λ = 1

2 , 1, and 2—it has
been shown [14] that the square of the ground state wavefunction is intimately related to the
eigenvalue distribution of random matrices of the orthogonal ensemble, the unitary ensemble
and the symplectic ensemble, respectively. Using this connection, Sutherland had shown how
to construct the 1PDM and the PD using integral relations of random matrix theory. The
resulting formulae reduce the problem, say for the 1PDM, from the evaluation of a high-
dimensional integral to the computation of a determinant of a matrix [15]. From the 1PDM
γ (x−x ′), the momentum distributions nκ for the three special values of ν follow via the Fourier
transform. Due to correlation the latter quantities are non-idempotent. They determine the
mentioned correlation entropy per particle s = − ∑

κ nκ ln nκ/
∑

κ nκ . Knowledge of the
PD n(x12) allows [14, 15, 34, 44] us to calculate the fluctuation �NX of the particle number
around its mean value NX = nX in any piece (domain) X of the x-axis. Comparing this
variance of the particle-number distribution PX(N) for the cases of ‘no correlation’ (ν = 1

2
or HF approximation) and ‘correlation’ shows the above-mentioned narrowing for repulsion
(ν > 1

2 ) in a smaller�NX. In contrast, for attraction (ν < 1
2 ) a broadening with a larger�NX

appears.
In section 2, we introduce the CS model, define the kinematical quantities used

throughout the text, and present the Hellmann–Feynman theorem. Section 3 is devoted to
the thermodynamic limit. In section 4, after presenting the HF approximation, we discuss first
qualitatively and then analytically the influences of the CS interaction on 1PDM and PD. In
particular, we show that the above-mentioned divergences in kinetic and potential energies are
caused by a peculiar behaviour of the PD n(xij ) for small inter-particle separations xij 	 k−1

F
and of the momentum distribution nκ for large momenta k 
 kF or κ ≡ k/kF 
 1. In section 5
we then apply the mentioned fluctuation–correlation measures to the CS model. Section 6 is
devoted to details of the numerics and in section 7 we discuss extensions of our approach
to impenetrable bosons and lattice gases. We conclude in section 8 with a discussion of our
results.

5 What is usually referred to as the Hellmann–Feynman theorem was first formulated by Güttinger [48], see his
equation (11). This result is implicitly contained in equation (28) of Born and Fock [49]. Whereas in these
papers any parameter is considered, Hellmann and later Feynman explicitly referred to the special case of nuclear
coordinates within the Born–Oppenheimer approximation, leading to the Hellmann–Feynman forces upon nuclei.
Within perturbation theory the theorem was already given by Schrödinger [50]. Thus the theorem is due to Schrödinger,
Born, Fock, Güttinger, Hellmann and Feynman.
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2. The system and its ground state

2.1. Hamiltonian, energies and quantum kinematical quantities

The Hamiltonian of the CS model is Ĥ = T̂ + V̂ with

T̂ =
N∑
i

1
2p

2
i V̂ =

N∑
i

vext(xi) +
N∑
i<j

ν2 − 1
4

x2
ij

(2.1)

with p2
i = −∂2/∂x2

i , and N equal to the number of particles. We assume the system to be
confined to the length L by an external potential vext(x), for example, a box or harmonic
oscillator potential. In the following we alternatively assume periodic boundary conditions
with vext(x) = 0 and a density in the k space described by L�k/(2π) = 1 [14]6. The average
particle density is n = N/L. Furthermore, it follows from dimensional arguments that all
energies for the Hamiltonian (2.1) are proportional to n2 in agreement with the virial theorem
and all lengths are measured in units of 1/n (thus kF ∼ n) [14].

We denote the ground state energy and its kinetic and potential ‘components’ by EN =
〈Ĥ 〉, TN = 〈T̂ 〉 and VN = 〈V̂ 〉, respectively. Then the corresponding energies per particle
are eN = EN/N , tN = TN/N , vN = VN/N with eN = tN + vN . From the antisymmetric (or
symmetric) ground state wavefunction follow by contractions [14, 15] the 1PDM γN(x; x ′) and
the PD nN(x1, x2) normalized as

∫
dxγN(x; x) = N and

∫
dx1

∫
dx2 nN(x1, x2) = N(N−1),

respectively. The PD describes the XC hole, vanishing for zero separation and approaching
the Hartree product ρN(x1)ρN(x2) for large separations. The cumulant PD wN(x1, x2) ≡
ρN(x1)ρN(x2)− nN(x1, x2) is size-extensively normalized via∫

dx1

∫
dx2 wN(x1, x2) = N. (2.2)

Furthermore, with the abbreviation y = kFx, kF = πn [14], and with the
dimensionless functions fN(y1; y2) hermitian, gN(y1, y2) non-negative, and hN(y1, y2) ≡
fN(y1; y1)fN(y2; y2) − gN(y1, y2), we can write for the 1PDM γN(x1; x2) = nfN(y1; y2),
for the PD nN(x1, x2) = n2gN(y1, y2), and for the cumulant PD we have wN(x1, x2) =
n2hN(y1, y2). The dimensionless cumulant PD is normalized as

1

N

∫
dy1

π

dy2

π
hN(y1, y2) = 1 (2.3)

which follows from equation (2.2). With these dimensionless 1PDM and PD and with the
Fermi energy εF = k2

F/2 the energies tN and vN are given by

tN = 1

N

∫
dy1

π

[
− ∂2

∂y2
1

fN(y1; y2)

]
y2=y1

εF (2.4a)

and

vN = 1

N

∫
dy1

π

dy2

π
gN(y1, y2)

ν2 − 1
4

y2
12

εF. (2.4b)

Therefore, tN/εF, vN/εF and eN/εF are functions of ν andN . The latter dependence disappears
for the thermodynamic limit as shown in section 3.

6 We emphasize that the replacement µ/x2
ij → µ/[L sin(πxij /L)/π ]2 is used for periodic systems as discussed in

[14, 15].
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2.2. The Hellmann–Feynman theorem

If eN is known as a function ofµ = ν2 − 1
4 , then tN and vN can be obtained from the Hellmann–

Feynman theorem [32] without knowing the quantum-kinematical quantities fN(y1; y2) and
gN(y1, y2). This theorem states that

∂EN

∂µ
=

〈
∂Ĥ

∂µ

〉
(2.5)

which for (2.1) gives

vN = µ
∂eN

∂µ
tN =

(
1 − µ

∂

∂µ

)
eN (2.6)

and also

∂

∂µ
tN = −µ ∂

∂µ

(
1

µ
vN

)
. (2.7)

Thus—with equation (2.4) in mind—the Hellmann–Feynman relation (2.5) for the 1/x2
ij model

establishes an integral relation between the dimensionless 1PDM fN on the left-hand side and
the dimensionless PD gN on the right-hand side of equation (2.7).

3. Thermodynamic limit

We wish to study the thermodynamic limit with N → ∞ and L → ∞ such that n = N/L =
constant. The resulting extended system has only two parameters, the interaction strength
parameter ν and the Fermi wavenumber kF. So t/εF, v/εF and e/εF become functions of ν
only. Furthermore, the thermodynamic limit makes the 1PDM and the PD to depend only on
kFx12 ≡ kF|x1 − x2| = |y1 − y2| ≡ y12. The dimensionless functions fN , gN and hN then take
the forms f (y12), g(y12) and h(y12) = 1 − g(y12), respectively, with f (0) = 1 and g(0) = 0
or equivalently h(0) = 1. These functions have ν as the only parameter.

The eigenfunctions (or natural orbitals) of the 1PDM γ (x12) = nf (y12) become simply
plane waves ϕ0

k (x) = eikx/
√
L, such that

γ (x12) = n

∫ ∞

0
dκ nκ cos κy12 ≡ nf (y12) (3.1)

where nκ is the momentum distribution and κ = k/kF.
For ν = 1

2 (ideal spinless 1D Fermi gas) the Pauli principle leads in the reciprocal
space to the Fermi ice block n0

κ = θ(1 − |κ|) and in the direct space to the ideal X hole

g0(y) = 1 − [f 0(y)]
2

with the dimensionless 1PDM f 0(y) = (sin y)/y following from
equation (3.1). The energy per particle is e0 = εF/3 = k2

F/6.
In general, with γ (0) = n, the momentum distribution nκ is normalized as

∑
κ nκ = N

or ∫ ∞

0
dκ nκ = 1. (3.2)

The kinetic energy per particle is according to equation (2.4a)

t = 6
∫ ∞

0
dκ nκ

κ2

2
e0 (3.3)

where nκ is a function of |κ| and ν, so t/e0 is a function of ν only with t = e0 for ν = 1
2 as

shown in figure 1.
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Figure 1. Bulk energy e (full), kinetic energy t (broken), and potential energy v (dotted) plotted as
functions of interaction strength parameter ν. Thin curves denote the results of the Hartree–Fock
approximation, thick curves are exact. The thin chain curve indicates the ‘fall-into-the-origin’ at
ν = 0.

Figure 2. Dimensionless PD g(y) = n(x12)/n
2 as a function of the dimensionless inter-particle

separation y = kFx12 for ν = 0 (broken), 1
2 (full) and 3

2 (dotted). The thin line is a guide to the
eye only.

The corresponding expressions for the PD g(y) are according to equation (2.3)

2
∫ ∞

0

dy

π
h(y) = 1 h(y) = 1 − g(y) (3.4)
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Figure 3. Fermionic momentum distributions nκ versus κ = k/kF with ν = 0 (broken), 1
2 (full)

and 3
2 (dotted). Inset, nκ for ν = 3

2 and L = 401 computed with N = 21, 41, 81, 121, 161, 201,
241, 281, 321, 361 and 401. The data for N = 21(◦), 41(�), 81(�) and 121(×) do not show any
density dependence, whereas the larger density data (curves) do.

and for the interaction energy per particle according to equation (2.4b)

v = 6
∫ ∞

0

dy

π
g(y)

ν2 − 1
4

y2
e0 (3.5)

where g(y) is a function of y and ν, so v/e0 is a function of ν only (see figure 1). With t and
v follows the integral relation

∫ ∞

0
dκ
κ2

2

∂nκ

∂µ
= −

∫ ∞

0

dy

π

µ

y2

∂g(y)

∂µ
µ = ν2 − 1

4 (3.6)

as a consequence of the Hellmann–Feynman theorem expressed in equation (2.7). Correlation
via ν �= 1

2 deforms the X hole and the Fermi ice block as shown in figures 2 and 3 in such a
way that equation (3.6) is maintained.

4. Hartree–Fock approximation and correlation beyond it

4.1. Hartree–Fock approximation

The simplest approximation for the quantities nκ , g(y), t and v is obtained from the HF
approach. The momentum distribution in equation (3.3) and the PD in equation (3.5) are to
be replaced by their ‘ideal’ expressions n0

κ and g0(y), respectively. Consequently, we find
tHF = e0 and vHF = 2µe0 and thus eHF = (1 + 2µ) e0, as shown in figure 1. Here the identity
(A.5) has been used. The total HF energy eHF also obeys the Hellmann–Feynman theorem
(2.5) and the virial theorem.
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Table 1. On-top exponent and coefficients of the PD according to equation (4.1).

ν 0 1
2

3
2

α 1 2 4

A π
6

1
3

16
135

a1 0 0 0

a2 − 1
10 − 2

15 − 8
35

a3
2

45π 0 0

a4
1

280
1

105
32

1225

a5 − 4
1575π 0 0

a6 − 1
15 120 − 2

4725 − 2176
1091 475

a7
4

55 125π 0 0

a8
1

1330 560
2

155 925
125 696

1092 566 475

4.2. Qualitative discussion of correlation

Due to correlation the true ground state energy per particle, e, is below the HF energy eHF and
the true ground state wavefunction 0(· · ·) is no longer a single Slater determinant. Note that
the definition of the term ‘correlation’ needs a reasonable reference state, which is 0HF(· · ·)
in our case. So, correlation causes a negative correlation energy ecorr = e − eHF < 0, namely
through redistributions of g0(y) and n0

κ which are shown in figures 2 and 3 and described in
the following.

As we show in figure 2, correlation modifies the X hole of the unperturbed PD. In particular,
the correlation induced changes for small y are of interest, because the interaction 1/y2 is
there largest. The on-top behaviour of the uncorrelated X hole (ν = 1

2 or HF) is described by
g0(y) = y2/3+· · · . In its correlated counterpart with a ν-dependent exponent and ν-dependent
coefficients (see appendix B)

g(y) = Ayα
(
1 + a1y + a2y

2 + · · ·)
α = 1 + 2ν

(4.1)

correlation for ν �= 1
2 shows up in α �= 2 and A �= 1

3 . More precisely, repulsive particle
interaction (ν > 1

2 ) supports the Pauli ‘repulsion’, so the X hole is broadened (through
increasing α and decreasing A), but attractive particle interaction (ν < 1

2 ) fights against
(or competes with) the Pauli ‘repulsion’, so the X hole is narrowed (through decreasing α
and increasing A) as shown in figure 2 and table 1. This X hole narrowing (for ν < 1

2 ) or
broadening (for ν > 1

2 ) makes

6
∫ ∞

0

dy

π

g(y)

y2
= 1 +

1

2ν
≷ 2 for ν ≶ 1

2 . (4.2)

The equation follows from equation (4.8) below. Thus v<vHF = 2µe0 for ν �= 1
2 as shown in

figure 1.
As shown in figure 3, correlation thaws the Fermi ice block θ(1 − |κ|). Mathematically,

the momentum distribution nκ becomes non-idempotent, physically this means that correlation
excites particles for κ > 1 and holes for κ < 1. This increases the kinetic energy independent
of whether the interaction is attractive (ν < 1

2 ) or repulsive (ν > 1
2 ): t > tHF as can be

seen in figure 1. We note that nκ has no discontinuity at |κ| = 1. Its value is 1
2 and
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near κ = 1 it follows a power law as is typical for all Luttinger liquids with their zF = 0
[35, 36].

We model the melting of the Fermi ice block analytically with the continuous function

nκ = 1
2 + B(1 − κ)β

[
1 + b−

1 (1 − κ)β + b−
2 (1 − κ)2β + · · ·] for 0 � κ � 1 (4.3a)

nκ = 1
2 − B(κ − 1)β

[
1 + b+

1 (κ − 1)β + b+
2 (κ − 1)2β + · · ·] for 1 � κ � 2 (4.3b)

nκ = C

κγ

(
1 +

c2

κ2
+
c4

κ4
+ · · ·

)
for 2 � κ � ∞ (4.3c)

with [15, 37]

β = 1

4

(1 − 2ν)2

1 + 2ν
(4.4)

and γ = 3 + 2ν (appendix B). The exponents β, γ and the coefficients B,C and b±
i , ci depend

on ν. The condition 0 < β < 1 ensures an infinite slope of nκ at κ = 1. This nκ has to obey
the normalization (3.2) and the condition

3
∫ ∞

0
dκ nκκ

2 =
(

1
2 + ν

)2

2ν
� 1 (4.5)

which follows from equation (4.7) below. For ν = 1
2 (or HF) it is β = 0, B(1 +

∑
i b

±
i ) = 1

2

and C = 0. The correlation-induced melting for ν �= 1
2 shows up in β > 0, B(1 +

∑
i b

±
i ) <

1
2

and C > 0.

4.3. Results of the exact solution

With the help of the Bethe ansatz technique one obtains e = λ2e0 [14, 15]. e as a function of
the interaction strength parameter λ shows no special behaviour for λ >

→
1
2 , but as a function of

the interaction strength µ = λ(λ− 1),

e = (
1
2 + ν

)2
e0 ν =

√
1
4 + µ (4.6)

the non-analytical behaviour for µ → − 1
4 is obvious.

Equation (4.6) yields with the Hellmann–Feynman theorem (2.6) the kinetic energy per
particle,

t =
(

1
2 + ν

)2

2ν
e0. (4.7)

With equation (2.6) equation (4.6) also yields the interaction energy per particle

v = µ

(
1 +

1

2ν

)
e0. (4.8)

From figure 1 we see that both t and v diverge for ν → 0, while e remains finite.
Equations (4.7) and (4.8) lead to∫ ∞

0
dκ nκκ

2 = 6ν

[∫ ∞

0

dy

π

g(y)

y2

]2

(4.9)

as another integral relation between the momentum distribution nκ and the dimensionless PD
g(y) in addition to equation (3.6). These distribution functions have to change with ν in such a
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Figure 4. Static structure factor S(q) = 1 − h̃(q)/π for ν = 0 (broken), 1
2 (full) and 3

2 (dotted).
Inset, the three curves do not coincide at a single point close to q ≈ 1.72.

way that these relations (3.6) and (4.9) are obeyed together with the normalization conditions
(3.2) and (3.4).

The PD n(x12) = n2g(y) with y = kFx12 is known analytically for the values ν = 0, 1
2 ,

and 3
2 [14, 15]. For ν = 0 it is (with the notation of appendix A)

g(y) = 1 −
(

sin y

y

)2

+ Si(y)
d

dy

sin y

y
− π

2

d

dy

sin y

y
(4.10)

for ν = 1
2 (ideal Fermi gas) it is

g(y) = 1 −
(

sin y

y

)2

(4.11)

and for ν = 3
2 it is

g(y) = 1 −
(

sin 2y

2y

)2

+ Si(2y)
d

d(2y)

sin 2y

2y
. (4.12)

The corresponding dimensionless cumulant PDs h(y) = 1−g(y) are given in table 2 together
with their Fourier transforms

h̃(q) = 2
∫ ∞

0
dy cos(qy) h(y). (4.13)

They have via S(q) = 1 − h̃(q)/π a simple relation to the static structure factor (or
van Hove correlation function) S(q) = 〈ρ̂q ρ̂†

q〉/N , which describes the correlation of density–
density fluctuations. ρ̂q = ∑

i exp(−iqxi) is the Fourier transform of the density operator
ρ̂(x) = ∑

i δ(x−xi). The three PDs g(y) are shown in figure 2 and the three structure factors
S(q) in figure 4.
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Table 2. Dimensionless cumulant PD h(y) and the structure factor S(q) used for the computation
of �NX and 91(ν) as in equations (5.2) and (5.4).

ν h(y) S(q) = 1 − h̃(q)/π

0

(
sin y

y

)2

−
[
Si(y)− π

2

] d

dy

sin y

y

[
q − q

2
ln(1 + q)

]
θ(2 − q) +

[
2 − q

2
ln
q + 1

q − 1

]
θ(q − 2)

1

2

(
sin y

y

)2
q

2
θ(2 − q) + θ(q − 2)

3

2

(
sin 2y

2y

)2

− Si(2y)
d

d2y

sin 2y

2y

[q
4

− q

8
ln |1 − q

2
|
]
θ(4 − q) + θ(q − 4)

For ν = 1
2 the weak oscillations of g(y) and the (first-order) kink of S(q) arise from the

Fermi momentum distribution nκ with its sharp discontinuity zF = 1 at κ = 1. With increasing
repulsion the oscillations of g(y) are enhanced, which is displayed in the reciprocal space by
the peak of S(q) at q = 2 (and a third-order kink at q = 4). This peak is customary in 1D
quantum liquids (see, e.g., the spin-correlation functions of [38]). The first maximum of g(y)
runs through a certain trajectory from (π , 1) to (2.99, 1.24). Whereas repulsion enhances
the Friedel oscillations of g(y) and the kink structure of S(q), they diminish with increasing
attraction: for ν = 0 both g(y) and S(q) approach the value 1 smoothly (non-oscillatory) from
below. The discontinuity for ν = 0 of the second derivative of S(q) at q = 2 replaces the kink
seen for other values of ν. For the on-top behaviour of g(y) in terms of g(0), g′(0), g′′(0) the
following holds: it is g(0) = 0, according to the Pauli principle, g′(0) = π/6 for ν = 0, but
0 for ν > 0, and it is g′′(0) = 0 for ν = 0, infinite for 0 < ν < 1

2 , but 2
3 for ν = 1

2 , and 0 for
ν > 1

2 . We note that S(q) and g(y) can be also computed for other values of ν in addition to
the three special values used here [34, 44].

With the identities (A.2)–(A.4) the normalization condition (3.4) is fulfilled. From
equations (4.10)–(4.12) the on-top coefficients of equation (4.1) follow; they are shown in
table 1. Note that the last two terms of equation (4.10) do not contribute to the normalization
because of equation (A.3) and that the last term causes the odd on-top coefficients of table 1
and also the linear behaviour for small y. Its oscillations are exactly cancelled by the combined
oscillations of the second and the third term. Simultaneously, these terms ensure the correct
normalization.

The PD (4.11) for ν → 1
2 plugged into equation (2.4b) yields with the identity (A.5)

the same as results from equation (4.8), which follows from the total energy per particle,
equation (4.6), and the Hellmann–Feynman theorem (2.6), namely v = 2µe0. Similarly, the
PD (4.12) for ν → 3

2 plugged into equation (3.5) yields with the identities (A.5) and (A.6) the
same as results from equation (4.8), namely v = 4µe0/3.

For ν = 0 a divergence appears, because from the PD (4.10) follows an on-top behaviour,
which is linear in y as shown in figure 2 and table 1. This linear behaviour results from the
last term of equation (4.10), which does not influence the normalization (3.4), but it makes
the interaction energy v ∼ ∫ ∞

0 dy g(y)/y2 diverge logarithmically in agreement with the
divergence of v → −e0/8ν for ν >→0 as displayed in figure 1.

The divergence of the interaction energy is accompanied and compensated by the
corresponding divergence of the kinetic energy t → e0/8ν. This indicates a special asymptotic
behaviour of the momentum distribution nκ for ν >→0, namely equation (4.3c) with γ >

→3.
For γ > 3 the integral

∫ ∞
0 dκ nκκ2 is convergent, but with γ

>

→3 for ν >→0 it diverges
logarithmically, whereas the normalization integral (3.2) remains convergent. The counterpart
to this asymptotic behaviour of nκ for κ → ∞ is the on-top behaviour of the PD for y → 0
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Table 3. Coefficients as in equations (4.3a)–(4.3c) calculated from the numerically determined
momentum distribution nκ for ν = 0 and 3

2 (at n = 1/2L0).

κ ∈ [0, 1] κ ∈ [1, 2] κ ∈ [2,∞]

ν = 0
B 0.863 355 B 0.863 355 C 0.017 788
b−

1 −0.746 775 b+
1 −0.750 439 c2 5.972 791

b−
2 0.731 357 b+

2 0.747 380
b−

3 −0.420 828 b+
3 −0.433 779
b+

4 0.009 552

ν = 3
2

B 0.552 286 B 0.552 286 C 1.463 69
b−

1 0.434 380 b+
1 1.467 126 c2 2.053 966

b−
2 −0.570 516 b+

2 −4.156 361
b+

3 4.180 551
b+

4 −1.606 130

as shown in figure 2 and table 1 with a smooth transition of the coefficient A in equation (4.1)
from π/6 via 1

3 , to 16
135 for ν = 0, 1

2 and 3
2 , respectively. With quadratic interpolation of

the coefficients shown in table 1 as functions of ν, one may continuously switch the on-top
behaviour of the PD g(y) between its forms at ν = 0 and 3

2 . For the PD exponent α = 1 + 2ν
we refer to Appendix B, where also the momentum-distribution exponent is conjectured as
γ = 3 + 2ν.

These divergences of the kinetic and the interaction energies indicate that for attractive
particle interaction µ/x2

ij with µ → − 1
4 the system becomes unstable (no ground state with

finite kinetic and potential energies). We note that it was shown in [33] that the singular particle
interaction −|µ|/|�r12|2 already makes two particles fall together (‘fall-into-the-origin’) for
|µ| > 1

4 (ground state with E → −∞) and for |µ| < 1
4 there are only scattering states with

E � 0 (no bound states with E < 0) [14].
For ν = 0 the exact solution of the CS model yields the momentum-distribution data. In

section 6 we will give the details of the necessary numerical calculation. The coefficients of
equation (4.3a) are fitted to the nκ values for κ = 0 . . . 1 and the coefficients of equation (4.3b)
are fitted to the nκ values for κ = 1 . . . 2. The coefficients are chosen to make also nκ at
κ = 2 continuous and smooth. Finally, b+

3 is fine tuned to make the normalization equal to 1
according to (3.2). The results are shown in figure 3 and the values of the coefficients are given
in table 3. The case ν = 3

2 is similarly treated only with the difference that also the kinetic
energy t = 4

3e0 can be used for the fine tuning in addition to the normalization condition (3.2).
The results are also shown in table 3. Here b+

3 and b+
4 have been used for fine tuning (which

yields the normalization 0.997 and t = 1.34e0, instead of 1 and 4e0/3).

5. Fluctuation–correlation analysis

5.1. Quantities following from the pair density

Particle-number fluctuations. Following Fulde [1] one may ask to what extent correlation
influences particle-number fluctuations�NX in a domainX, i.e. a certain interval of the x-axis,
where on average there areNX = nX particles. These fluctuations are measured quantitatively
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Figure 5. Particle-number fluctuation (�NX)
2 /NX in domains X of the CS model after

equation (5.2) for ν = 0 (broken), 1
2 (full) and 3

2 (dotted). The chain curve corresponds to
(�NX)

2 /NX for strict correlation [3].

by [1, 3, 13]

(�NX)
2

NX
= 1 − 1

nX

∫ X

0
dx1

∫ X

0
dx2 w(x12)

= 1 − 1

Y

∫ Y

0
dy1

∫ Y

0
dy2

h(y12)

π
(5.1)

with Y = kFX = πnX. Following appendix A of [3] the 2D integral (5.1) is reduced to a 1D
integral with the help of the Fourier transform (4.13), namely

(�NX)
2

NX
= 1 − 2

Y

∫ ∞

0

dq

π

1 − cos(qY )

q2

h̃(q)

π
. (5.2)

The results are shown in figure 5, where the case ν → ∞ (‘strict’ or ‘perfect’ correlation) [3]
is also displayed. Traces of the oscillations as ν → ∞ are already visible for ν = 3

2 .
With h(y) = 1 − g(y) and with the expansion of g(y) according to equation (4.1)—see

also the text after equation (4.13)—the small-X expansion of equation (5.1) is

(�NX)
2

NX
= 1 + d1nX + d2(nX)

2 + d3(nX)
3 + d4(nX)

4 + d5(nX)
5 + · · · . (5.3)

The slope d1 at X = 0 does not depend on the interaction strength parameter ν as shown
in table 4 because of g(0) = 0 and h(0) = 1 not depending on ν; but the coefficients of
the next terms do such that the particle-number fluctuations are suppressed due to repulsive
particle interaction, but enhanced due to attractive particle interaction: correlation makes the
particle-number distribution PX(N) narrower for repulsion (ν > 1

2 ) and broader for attraction
(ν < 1

2 ). We remark, that fluctuation enhancement (induced by attractive interaction) may
generally support/cause clusterings (e.g. paramagnons prior to the para-to-ferromagnetic phase
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Table 4. Coefficients of the small-X expansion of (�NX)2 /NX as in equation (5.3).

ν 0 1
2

3
2

d1 −1 −1 −1

d2
1

18π
2 0 0

d3 0 1
18π

2 0

d4 − 1
600π

4 0 0

d5 0 − 2
675π

4 16
2025π

4

transition). In our case this tendency shows up in the sudden ‘fall-into-the-origin’ at ν = 0. If
one considers with X = 1/n a Wigner–Seitz ‘sphere’ (with ‘radius’ X/2 and NX = 1), then

91(ν) = 1 − χ(ν)

χ( 1
2 )

χ(ν) = (�NX)
2

NX
(5.4)

is a reasonable correlation measure based on particle-number fluctuations as we show in
figure 6.

On-top behaviour. The exponent α and the coefficients A, ai of equation (4.1) describe the
short-range or dynamical correlation, i.e. the small-separation behaviour of g(y), see table 1.
Cioslowski’s correlation cage [8] is in our case simply the inter-particle-separation range
y = 0 . . . ymax with ymax being that separation where the PD g(y) has its first maximum
gmax = g(ymax). For ν = 0, 1

2 ,
3
2 the corresponding values are ymax = ∞, π , 2.99 and

gmax = 1, 1, 1.24 [3]. One may ask to what extent the correlation cage contributes to the
interaction energy and define

92(ν) = 1 − Vcage(ν)

Vcage(
1
2 )

Vcage(ν) =
∫ ymax

0 dy g(y)/y2∫ ∞
0 dy g(y)/y2

� 1 (5.5)

as an energetic correlation measure with Vcage(0) = 1; the expression simplifies when using
(4.2). Both 91 and 92 vanish for ν = 1

2 as shown in figure 6.

5.2. Quantities following from the momentum distribution

Critical exponent. The critical or correlation exponent β of equation (4.4) can be computed
from conformal field theory [15, 37]. It describes (together with the coefficientB) the behaviour
of nκ near κ = 1 according to equations (4.3a) and (4.3b). For the three special values ν = 0, 1

2

and 3
2 , this gives 1

4 , 0 and 1
4 , respectively, as shown in figure 6. The exponent γ describes the

decay of the correlation tail.

Non-idempotency and correlation entropy. The qth-order non-idempotency is [12] c(q) =
1 − ∫ ∞

0 dκ (nκ)q . The derivative of c(q) at q = 1 is s ≡ c′(1) or

s(ν) = −
∫ ∞

0
dκ nκ ln nκ � 0 (5.6)

to be referred to as correlation entropy [12, 13]. It has been plotted in figure 6.
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Figure 6. Correlation measures based on (a) the bulk of the momentum distribution, (b) the tail
of the momentum distribution and (c) the PD shown as functions of ν. The full curves are guides
to the eye only. The thin chain line indicates the ‘fall-into-the-origin’ at ν = 0.

Correlation tail properties. The relative number of particles (or holes) in the corresponding
correlation tail is [12, 13, 39]

Ntail(ν) =
∫ ∞

1
dκ nκ =

∫ 1

0
dκ(1 − nκ) < 1. (5.7)

The contribution of the correlation tail to s is [13]

Stail(ν) = −
∫ ∞

1
dκ nκ ln nκ < s(ν). (5.8)

In addition to these quantum-kinematic measures one may use [13]

Ttail(ν) =
∫ ∞

1 dκ nκκ2∫ ∞
0 dκ nκκ2

� 1 (5.9)

as another energetic measure with Ttail(0) = 1. Also these correlation measures vanish for
ν = 1

2 as shown in figure 6.
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5.3. The correlation energy

For ecorr = e − eHF it follows that

ecorr = − (
ν − 1

2

)2
e0. (5.10)

The kinetic and interaction energy contribute tcorr = − 1
2ν ecorr and vcorr = (

1 + 1
2ν

)
ecorr,

respectively, to ecorr.

5.4. Comparison of the correlation measures

When comparing the computed correlation measures in figures 6 it turns out that for small
|ν − 1

2 | the PD-based measures 91,2 of equations (5.4) and (5.5) are proportional to ν − 1
2

(which is −e′
corr/(2e0)), whereas the nκ -based measures (5.6)–(5.9) as well as (4.4) behave

like (ν− 1
2 )

2 (which is −ecorr/e0). So the latter ones are not so sensitive as the first ones. With
s(ν) = 0.5828|ecorr/e0| + · · · the Collins’ conjecture |ecorr| ∼ s is confirmed at least for weak
interaction. In this limit alsoNtail, Stail and Ttail are mutually proportional and their derivatives
are proportional to 91 and 92.

We note that the quantities χ(ν), Vcage(ν), Ntail(ν), Stail(ν) and Ttail(ν) are reference
free, i.e. they are defined without reference to the non-interacting case ν = 1

2 , which
in our case is simultaneously equivalent to the Hartree–Fock approximation. Reference
quantities appear in 91,2 with χ( 1

2 ) and Vcage(
1
2 ) and in s(ν) with s( 1

2 ) = 0. Whereas this
observation is important for quantum chemistry—as stressed by J Cioslowski [8]—whenever
multi-configuration appears, it is less important in our case which is well described by single
configuration.

6. Numerical determination of 1PDM and n(κ) for the CS model

Results from the theory of random matrices enable the calculation of various correlation
functions for the CS model [14, 15, 28–30]. In particular, the 1PDM can be expressed in
terms of a determinant of an appropriate matrix F (ν)pq [14, 15]. The size of this matrix is
specified by the number of particles N to be (N − 1)2 for ν = 1

2 and 3
2 and (N − 1)2/4 for

ν = 0. Each element of F (ν)pq contains simple trigonometric 1D (ν = 1
2 and 3

2 ) or 2D (ν = 0)
integrals.

For some cases, most notably ν = 1
2 , the resulting determinant can be computed

analytically and corresponding expressions have been given in [15]. For the other cases,
we have evaluated the determinant numerically [15], using a subdivision of the system volume
(periodicity length) according to L/L0 = 42, 402 and 402 for ν = 0, 1

2 and 3
2 , respectively.

The particle number, odd due to periodicity of the wavefunction [15], varied from N = 1 to
401, corresponding to a variation in density n from nearly 0 to nearly 1. Taking the Fourier
transform, we next compute the momentum distribution nκ for all densities. In the inset of
figure 3, we show results for one of the three special ν values.

Next, we apply the definitions of correlation measures and correlation energies as given
in sections 3–5 and study their density dependence. In figure 7 we show results for the entropy
s and in figure 8 for the various energies as the density is varied. As all energies scale
with n2, these measures should be density independent when normalized with respect to e0.
However, we do, in fact, see a pronounced density dependence for n � 0.5/L0 and also for
n � 0.05/L0. This latter density dependence is simply due to the small particle numbers,
thus a small size of F (ν)pq and consequently a limited resolution when computing the 1PDM



Correlation analysis for the CS model 1501

Figure 7. Correlation entropy (5.6) for fermions (full curve) as a function of density at ν = 3
2 .

The chain curve corresponds to s obtained for the discrete CS model.

Figure 8. Kinetic energy t as computed from the Hellman–Feynman theorem (2.5) (broken line),
and t from equation (2.6) (full curves) for fermions (thick curve) and bosons (thin curve) as a
function of density at ν = 3

2 .

at fixed L/L0. The density dependence at large n values is more complicated to explain.
The computation of the 1PDM by the connection with random matrix theory works for the
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Figure 9. Bosonic momentum distributions nκ versus κ = k/kF with ν = 0 (broken), 1
2 (full)

and 3
2 (dotted). Inset, nκ for ν = 3

2 , L = 401 and particle numbers identical to the inset of figure 3.
The data for N = 21(◦), 41(�), 81(�), 121(×), 161(+) and 201(∗) do not show any density
dependence effects.

periodic model7. Thus there exists a Brillouin zone and the tail of nκ for |κ| outside this
Brillouin zone is folded back into it. The tail of nκ thus tends to be dominated by this effect
for large n values as shown in the inset of figure 3. However, knowing that the correlation
measures must be independent of density in the thermodynamic limit, we deduce their values
by restricting to these density regions where the independence holds. Then we apply the fit
according to equation (4.3) as explained in section 4.2. In figure 6 we indicate by error bars
the small variation in the correlation entropy when using instead of nκ as in figure 3 the nκ as
in the inset. Similarly, the corresponding variations inNtail, Stail and Ttail are within the symbol
sizes.

7. Extension to impenetrable bosons and lattice gases

As mentioned in the introduction, the CS model is also solvable for bosonic particle symmetry.
The bosonic wavefunctions have to obey an additional boundary condition, namely they have
to vanish for inter-particle separations xij → 0 such that the resulting system consists of
impenetrable or hard-core particles [14] with additionalµ/x2

ij interaction. Both PD and 1PDM
may be calculated as before. The PD is independent of statistics [14], thus the fermionic
exchange hole agrees with the bosonic impenetrability hole and all quantities computed before
based on the PD are the same in the bosonic and the fermionic case. For the 1PDM this
is different, the momentum distribution of bosons is quite different from the fermionic nκ as
shown in figure 9. However, energetic quantities and correlation measures based upon those are
nevertheless independent of the statistics and should thus be the same for bosons and fermions.
In figure 8 we show that this is indeed the case. Thus, besides the density independence we

7 See footnote 6.
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have another criteria that allows us to extract the correct values of the correlation measures
from these plots. We note that the above-mentioned unwanted density dependence is also
present in the bosonic nκ and visible in figures 7 and 8. Also present is the aliasing effect as
shown in the inset of figure 9.

In [14, 15], it had been shown to be useful to restrict the family of wavefunctions of the
CS model for both bosonic and fermionic symmetry to a lattice such that the coordinates are
integers xj = 1, 2, . . . L [40–42]. Only the normalization constants of the wavefunctions
change and the 1PDM can be computed much as before [14], replacing the integrals in F (ν)pq by
appropriate sums [15]. Furthermore, the structure factor S(q) is known exactly and therefore
so is the PD [15]. The resulting lattice gas has a particle–hole symmetry and thus we need
to consider n � 1

2L0 only. However, the density N/L now enters all expressions in a non-
trivial way and the very useful density independence of the continuum model for the quantities
considered here is no longer applicable. Nevertheless, the continuum model corresponds to
the low-density limit of the discrete model. In figure 7, we show that this is indeed the case
for, for example, the correlation entropy.

8. Discussion and conclusions

Both the PD- and nκ -based correlation measures (4.4) and (5.4)–(5.9) vanish for ν = 1
2 (no

interaction). However, the first ones are more sensitive because of 91,2 ∼ ν − 1
2 near to the

no-interaction point as shown in figure 6(c), while the second ones are ∼ (ν − 1
2 )

2 like ecorr

of equation 5.10 as shown in figures 6(a) and (b) and therefore cannot distinguish between
attractive and repulsive interactions. In 1D the PD-based measures (5.4) and (5.5) are identical
for fermionic and (hard-core) bosonic particles. The nκ -based measures (4.4) and (5.6)–(5.9)
do not apply for bosonic particles; they are designed for fermionic particles only and appropriate
bosonic variants still have to be defined.

For repulsive particle interaction results well known from other extended many-body
systems, such as enhancement of the Friedel oscillations with maxima/minima trajectories
(figure 2), humps/peaks of the static structure factor developing from its non-interacting
kink (figure 4), suppression of particle-number fluctuations (figure 5), are confirmed again.
However, for attractive interactions, we have found in this paper that particle-number
fluctuations are contrarily enhanced and that this is accompanied by a smoothening of the PD
(the oscillations disappear) and of the static structure factor (the kink disappears) as well as by
the appearance of a linear on-top behaviour of the PD. The latter behaviour results in a diverging
interaction energy in the strong attraction limit although the total energy remains finite. In
momentum space the Fermi ice block thaws for both cases and correlation tails develop. In
the strong attraction limit the correlation tail becomes so long ranged that the kinetic energy
diverges, thereby exactly compensating the divergence of the interaction energy. We have
shown that these divergences can be derived from the exactly known energy as a function of
the interaction strength with the help of the Hellmann–Feynman theorem (2.5). This theorem
allows one to calculate t (ν) and v(ν) separately from e(ν) and gives—in addition to their
normalizations (3.2) and (3.4)—exact relations for nκ and the PD as shown in equations (3.3)
and (3.5) together with equations (4.7) and (4.8), respectively. Equations (3.6) and (4.9) give
additional exact integral relations between nκ and the PD. We expect that similar relations
can be derived for correlation function results [43, 44] based on the theory of Jack symmetric
polynomials for values ν = p/q with p and q relatively prime positive integers [34]. Thus
an extension of our work to these ν is possible, albeit necessating a different approach for the
numerically stable evaluation of the products of integrals.
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In summary, we have analysed particle-number fluctuations and studied measures for the
correlation strength based on the pair density and on the momentum distribution of the 1D
quantum system of 1/x2

ij interacting particles. We made extensive use of the available exact
solution and applied the Hellmann–Feynman theorem to the CS model. Our results show that
further work is called for in order to make the qualitative terms ‘weak and strong correlation’
quantitatively precise presumably with a variety of quantities instead of a single index [13].
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Appendix A. Certain integrals

The following identities are valid with Si(x) = ∫ x
0 dy [sin(y)/y]:∫ ∞

0

dx

π

sin x

x
= Si(∞)

π
= 1

2
(A.1)

∫ ∞

0

dx

π

(
sin x

x

)2

= 1

2
(A.2)

∫ ∞

0

dx

π
[Si(∞)− Si(x)]

d

dx

sin x

x
= 0 (A.3)

∫ ∞

0

dx

π
Si(x)

d

dx

sin x

x
= −1

2
(A.4)

∫ ∞

0

dx

π

1

x2

[
1 −

(
sin x

x

)2
]

= 1

3
(A.5)

∫ ∞

0

dx

π

1

x2
Si(x)

d

dx

sin x

x
= −2

9
. (A.6)

Equations (A.2)–(A.4) determine the normalization of the PDs (4.10)–(4.12). Equations (A.5)
and (A.6) determine the interaction energy v for the HF approximation and for ν = 3

2 . For the
fluctuation analysis with equations (5.1) and (5.2)

2

π

∫ ∞

0
dy cos(qy)

(
sin y

y

)2

=
(

1 − q

2

)
θ(2 − q) (A.7)

2

π

∫ ∞

0
dy sin(qy)Si(y)

sin y

y
= −1

2
ln |1 − q| θ(2 − q) (A.8)

2

π

∫ ∞

0
dy cos(qy)Si(y)

d

dy

sin y

y
= −

[
1 − q

2
+
q

2
ln |1 − q|

]
θ(2 − q) (A.9)

∫ ∞

0
dy cos(qy)

d

dy

sin y

y
= −

[
1 − q

2
ln

∣∣∣∣ 1 + q

1 − q

∣∣∣∣
]

(A.10)

2

π

∫ ∞

0
dy cos(qy)

sin y

y

d2

dy2

sin y

y
= 1

6
(q − 2)

(
q2 − q + 1

)
θ(2 − q) (A.11)
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2π
∫ Y

0
dy1

∫ Y

0
dy2

(
sin |y1 − y2|

|y1 − y2|
)2

= 2
∫ 2

0
dq

1 − cos qY

q2
(1 − 1

2q)

= 1 − cos 2Y − 2YSi(2Y ) +
∫ 2Y

0
dz

1 − cos z

z
. (A.12)

Appendix B. Kimball-like theorems for n(x12) and nκ

The small separation or on-top behaviour of the PD n(x12) is derived here similarly to Kato [46]
and Kimball [47] (see also [39, 45]) who found the cusp relation dg(kFr)/dr|r=0 = g(0)/aB

(or g′(0) = αrsg(0), α = (4/9π)1/3) for the pair correlation of the 3D uniform electron
gas. Let us consider two adjacent electrons with the centre of mass and relative coordinates,
X = (x1 +x2)/2 and x = x1 −x2, respectively. Focusing on the x dependence the Schrödinger
equation can be written as[

− d2

dx2 +
λ(λ− 1)

x2

]
ϕ(x)0̃(X, x3, . . .) = (E −H ′)ϕ(x)0̃(X, x3, . . .) (B.1)

where H ′ contains the remaining terms in the Hamiltonian. Because E −H ′ is non-singular
as x approaches zero, it is unimportant for small x. To lowest order in x we therefore have
ϕ(x) = xλ + · · · , from which immediately follows n(x) ∼ x2λ for the PD, see equation (4.1).
This can be concluded for λ �= 1 also directly from the many-body wavefunction0 ∼ >i<jx

λ
ij

[14] and for λ = 1 from equation (4.11).
A similar treatment of the asymptotic large-κ behaviour of the momentum distribution

nκ seems to lead in equation (4.3c) to the conclusion γ = 2λ + 2. This corresponds to
nκ→∞ ∼ g(0)/κ8 for the 3D uniform electron gas [39, 45, 47].
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